System Objective

1. System Objective

Design a real-time, scalable fraud prevention platform that detects suspicious blockchain transaction behavior before settlement by combining:

  • Event streaming and real-time feature engineering (Confluent)

  • Machine-learning–based risk scoring (Google Cloud Vertex AI)

  • Policy-driven alerting and intervention (off-chain)


2. Architectural Principles

  • Event-driven (no batch dependencies)

  • Low latency (sub-second detection)

  • Stateless services

  • Cloud-native & managed

  • Explainable AI decisions

  • Blockchain-aware but chain-agnostic


3. High-Level Architecture Overview

┌────────────────────┐
│ Blockchain Network │
│ (Node / Indexer)   │
└─────────┬──────────┘
          │ Transactions

┌──────────────────────────┐
│ Confluent Cloud (Kafka)  │
│  - raw-transactions      │
│  - enriched-transactions │
│  - fraud-alerts          │
└─────────┬────────────────┘
          │ Feature Events

┌──────────────────────────┐
│ Stream Processing Layer  │
│ (ksqlDB / Kafka Streams) │
│ - Windowed features      │
│ - Behavioral metrics     │
└─────────┬────────────────┘
          │ Feature Vector

┌──────────────────────────┐
│ Google Cloud Run         │
│ Fraud Scoring API        │
└─────────┬────────────────┘
          │ Inference Call

┌──────────────────────────┐
│ Vertex AI                │
│ Fraud Detection Model    │
└─────────┬────────────────┘
          │ Risk Score

┌──────────────────────────┐
│ Decision & Policy Layer  │
│ (Cloud Run)              │
└─────────┬────────────────┘
          │ Alerts / Logs

┌──────────────┬───────────────┐
│ Fraud Alerts │ BigQuery       │
│ Dashboard    │ Audit / Train  │
└──────────────┴───────────────┘

Last updated